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KINEMATICS-2D
 When motion of a body/particle is analysed by a moving system, then motion is said to be a relative motion.

 Relative velocity of A w.r. to B is defined as the time rate of change of relative displacement of A w.r. to B, which
is given by
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Relative velocity is simply the vector difference of two velocities.

 For one dimension 
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SWIMMER’S PROBLEMS

When boat/swimmer heads in the river to cross from one bank to another. Then motion of boat/swimmer in the
direction of resultant of velocity of flow in the river and velocity of boat/swimmer in still water.
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[2] Kinematics

Swimmer heads along AD making angle   with vertical in the direction of upstream so as while it crosses the

river it has less drift along the direction of river flow.

 Time to cross the opposite bank = 
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Vcos

Minimum time to cross the river 
d

v
  for which 00   i.e. For minimum time to cross the river swimmer should

head perpendicular to flow of stream.

 Time to reach just.  opposite back (only for v > u)
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 For v < u then swimmer heads to reach the opposite bank for minimum drift or through shortest path and hence
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Time to reach the opposite bank through shortest path = 2 2 2
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An oblique projection of a body from surface of earth the following motion of the body is said to be projectile

motion and body itself is called projectile   is the angle of projection u is velocity of projection. After time t the

projectile reaches at P  with velocity V.

Then from equation of projectile
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We have x xv u u cos   and y yv u gt   = usin gt 

Hence 
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Equation of trajectory or path of projectile is given by x u cos .t  and 
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Hence we have the equation by eliminating t.
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Range is the horizontal distance from point of projection to the point in the same plane where projectile strikes
which is given by
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Kinematics [3]

2u sin 2
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 . If   is replaced by 090  . R does not change.

Hence for given initial velocity R remains the same for two possible values of angle of projections if one is   then

other is / 2  .

 Equation of trajectory interms of range  y x tan (1 x / R)  

 Time of ascent = time of descent = 
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 Maximum height – attained by the projectile from plane from where projectile is projected.
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 Along motion of projectile path horizontal velocity remains the same and at hightest point it directs horizontally as
no vertical velocity at highest point.

 Every elementary section of projectile path is considered as on curve and the necessary centripetal force required
to keep a body on the curve path is pointed along radial direction towards centre of elementary curve path,
which is provided by component of weight.

 Time after which the velocity of projectile becomes perpendicular to initial velocity.
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Projectile Motion on  the inclined plane

(i) Projectile Motion up the plane
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Taking x-axis along inclined plane and y-axis perepndicular  to it at point O.
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The time of flight is the time taken for projectile travel from O to A
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As at t = 0, Projectile is at O.



[4] Kinematics

Time of flight 
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(ii) Projectile Motion down the inclined plane

The equation of projectile
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It occurs when direction of projection bisects the angle between the vertical and downward slope of the plane.
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