

India's Most Comprehensive & the Most Relevant Test Series designed according to the latest pattern of exams!

JEE MAIN

JEE ADV.

WBJEE

MHT CET

and many more...

Click here to join Test Series for 2022

It's time for you to crack upcoming IIT JEE Main & Advanced and other competitive exams with India's Most Trusted Online Test Series. Many questions at JEE Main 2021 were same/similar to the ones asked in our test series. That's the power of our test series!

Trusted by thousands of students & their parents across the nation

Our result in JEE Main 2021

150+

Got 99+ percentile (overall)

301

Got **99+ percentile** in one or more subjects

85%

Improved their score by **25 percentile**

89%

Felt **overall confident** after the test series

Click here to join Test Series for 2022

FREE Question Bank & Previous Year Questions for

JEE MAIN

JEE ADV.

BITSAT W

WBJEE MHT CET

and many more...

Why download MARKS?

- Chapter-wise PYQ of JEE Main, JEE Advanced, NEET, AIIMS, BITSAT, WBJEE, MHT CET etc.
- Chapter-wise NTA Abhyas questions
- Taily practice challenge and goal completion
- Bookmark important questions and add them to your notebooks
- Create unlimited Custom Tests

And all this for FREE. Yes, FREE! So what are you waiting for, download MARKS now.

4.8

Rating on Google Play

30,000+

Students using daily

1,00,000+

Questions available

KINEMATICS-2D

- When motion of a body/particle is analysed by a moving system, then motion is said to be a relative motion.
- Relative velocity of A w.r. to B is defined as the time rate of change of relative displacement of A w.r. to B, which is given by

$$\overset{r}{V_{AB}} = \frac{d\overset{r}{r_{AB}}}{dt} = \frac{d\overset{\text{u.u.}}{BA}}{dt} = \frac{d}{dt}(\overset{\text{u.u.r}}{OA} - \overset{\text{u.u.r}}{OB}) = \frac{d\overset{r}{r_{A}}}{dt} - \frac{d\overset{r}{r_{B}}}{dt}$$

$$\overset{\mathbf{I}}{V}_{AB} = \overset{\mathbf{I}}{V}_{A} - \overset{\mathbf{I}}{V}_{B} \ \, \text{or} \ \, \overset{\mathbf{I}}{V}_{BA} = \overset{\mathbf{I}}{V}_{B} - \overset{\mathbf{I}}{V}_{A}$$

 r_A^I = position vector of A at time t

 $r_{R} = position vector of B at time t$

Relative velocity is simply the vector difference of two velocities.

- For one dimension $\overset{\mathbf{I}}{\mathbf{V}}_{AB} = \overset{\mathbf{I}}{\mathbf{V}}_{A} \overset{\mathbf{I}}{\mathbf{V}}_{B}$
 - (i) \longrightarrow A; $|V_{AB}| = |V_A V_B|$ when motions are along parallel lines

 \longrightarrow E

(ii) \leftarrow B; $|V_{AB}| = V_A + V_B$ when motion are along antiparallel lines.

 $\longrightarrow A$

SWIMMER'S PROBLEMS

When boat/swimmer heads in the river to cross from one bank to another. Then motion of boat/swimmer in the direction of resultant of velocity of flow in the river and velocity of boat/swimmer in still water.

$$\overset{1}{V}_S, g = \overset{1}{V}_S, w + \overset{1}{V}_W, g \;\; ; \qquad \overset{1}{V}_S, g \; = \text{velocity of swimmer w.r to ground.}$$

Let
$$\overset{\mathbf{I}}{V}_{S, W} = \overset{\mathbf{I}}{V}$$
 = velocity of swimmer in still water

$$\overset{\mathbf{I}}{\mathbf{V}}\mathbf{w},\mathbf{g}=\overset{\mathbf{r}}{\mathbf{u}}$$
 velocity of water flow.

[2] **Kinematics**

Swimmer heads along AD making angle θ with vertical in the direction of upstream so as while it crosses the river it has less drift along the direction of river flow.

Time to cross the opposite bank = $\frac{d}{V_{cross}}$

Minimum time to cross the river $=\frac{d}{v}$ for which $\theta = 0^0$ i.e. For minimum time to cross the river swimmer should head perpendicular to flow of stream.

Time to reach just. opposite back (only for v > u)

$$u = v \sin \theta$$

i.e.
$$\theta = \sin^{-1} \frac{u}{v}$$
 and time to reach opposite bank $= \frac{d}{V\sqrt{1-\left(\frac{u}{v}\right)^2}} = \frac{d}{\sqrt{V^2-u^2}}$

For v < u then swimmer heads to reach the opposite bank for minimum drift or through shortest path and hence

$$\frac{dBC}{d\theta} = 0 \text{ where } BC = (u - V\sin\theta).\frac{d}{V\cos\theta}$$

$$\Rightarrow \sin\theta = \frac{V}{u} \text{ or } \theta = \sin^{-1}\left(\frac{V}{u}\right)$$

Time to reach the opposite bank through shortest path = $\frac{d}{\sqrt{1 - \left(\frac{V}{v}\right)^2}} = \frac{du}{v\sqrt{u^2 - v^2}}$

PROJECTILE MOTION

An oblique projection of a body from surface of earth the following motion of the body is said to be projectile motion and body itself is called projectile θ is the angle of projection u is velocity of projection. After time t the projectile reaches at P with velocity V.

Then from equation of projectile

$$\vec{a}_{x} = \frac{d^{2} \vec{r}}{dt^{2}} = 0$$
 and $\vec{a}_{y} = \frac{d^{2} \vec{r}}{dt^{2}} = g(-\hat{j})$

We have $v_x = u_y = u \cos \theta$ and $v_y = u_y - gt = u \sin \theta - gt$

Hence
$$v = \sqrt{u_x^2 + v_y^2} = \sqrt{u^2 - 2u \sin 2\theta gt + g^2 t^2}$$

and
$$\alpha = \tan^{-1} \frac{v_y}{v_x} = \tan^{-1} \left(\frac{u \sin \theta - gt}{u \cos \theta} \right)$$

Equation of trajectory or path of projectile is given by $x = u \cos \theta . t$ and $y = u \cos \theta . t - \frac{1}{2}gt^2$

Hence we have the equation by eliminating t.

$$y = x \tan \theta - \frac{1}{2}g \frac{x^2}{u^2 \cos^2 \theta}$$
. Hence trajectory is a parabolic path.

Range is the horizontal distance from point of projection to the point in the same plane where projectile strikes which is given by

 $R = u \cos \theta \times T$; T = time of flight

Since
$$T = \frac{2u\sin\theta}{g}$$
 (Sy = 0 = u_y $T - \frac{1}{2}.gT^2$ $\Rightarrow u\sin\theta.T - \frac{1}{2}gT^2 = 0 \Rightarrow T = \frac{2u\sin\theta}{g}$

Kinematics [3]

$$R = \frac{u^2 \sin 2\theta}{g}$$
. If θ is replaced by $90^0 - \theta$. R does not change.

Hence for given initial velocity R remains the same for two possible values of angle of projections if one is θ then other is $\pi/2-\theta$.

• Equation of trajectory in terms of range $y = x \tan \theta (1 - x/R)$

• Time of ascent = time of descent =
$$\frac{u \sin \theta}{g} = \frac{u_y}{g}$$

• Maximum height – attained by the projectile from plane from where projectile is projected.

$$H = \frac{u^2 \sin^2 \theta}{g} = \frac{u_y^2}{2} \quad \text{(At maximum height } v_y^2 = 0 = u_y^2 - 2gH \Rightarrow (u \sin \theta)^2 - 2gH = 0\text{)}$$

- Along motion of projectile path horizontal velocity remains the same and at hightest point it directs horizontally as no vertical velocity at highest point.
- Every elementary section of projectile path is considered as on curve and the necessary centripetal force required to keep a body on the curve path is pointed along radial direction towards centre of elementary curve path, which is provided by component of weight.
- Time after which the velocity of projectile becomes perpendicular to initial velocity.

$$\mathbf{u}.\mathbf{v} = 0 \implies (\mathbf{u}\cos\theta\hat{\mathbf{i}} + \mathbf{u}\sin\theta\hat{\mathbf{j}}).[\mathbf{u}\cos\theta\hat{\mathbf{i}} + (\mathbf{u}\sin\theta - \mathbf{g}t)\hat{\mathbf{j}}] = 0$$

$$\Rightarrow$$
 $u^2 - u \sin \theta$ gt = 0 or $t = \frac{u}{g \sin \theta}$

Projectile Motion on the inclined plane

(i) Projectile Motion up the plane

Taking x-axis along inclined plane and y-axis perepndicular to it at point O.

$$\hat{a}_x = \text{acceleration along x-axis} = g \sin \alpha (-\hat{i})$$

$$\mathbf{r}_{a_y} = g \cos \alpha (-\hat{\mathbf{j}})$$

The time of flight is the time taken for projectile travel from O to A

$$\therefore \text{ From } S_y = u_y t + \frac{1}{2} ayt^2 \text{ for O to A, } S_y = O$$

$$\therefore \Rightarrow t = \frac{2u\sin\theta}{g\cos\alpha}$$

As at t = 0, Projectile is at O.

[4] Kinematics

Time of flight
$$=\frac{2u\sin\theta}{g\cos\alpha}$$
; Range = OA = R is given

by
$$S_x = u_x.t + \frac{1}{2}a_xt^2$$

$$S_x = R = u \cos \theta \cdot \left(\frac{2u \sin \theta}{g \cos \alpha}\right) - \frac{1}{2}g \sin \alpha \cdot \left(\frac{2u \sin \theta}{g \cos \alpha}\right)^2$$

$$= \frac{2u^2 \sin \theta}{g \cos^2 \alpha} \left[\cos \theta . \cos \alpha - \sin \theta . \sin \alpha \right] \qquad \qquad = \frac{2u^2 \sin \theta}{g \cos^2 \alpha} \left[\cos(\theta + \alpha) \right]$$

$$R = \frac{u^2}{g\cos^2\alpha} \left[\sin(2\theta + \alpha) - \sin\alpha \right]$$

For the maximum-range $\sin(2\theta + \alpha) = 1$;

$$\theta = 45^{\circ} - \alpha / 2$$

$$R_{\text{max}}$$
 for projection inclined up to plane is $R_{\text{max}} = \frac{u^2}{g(1 + \sin \alpha)}$

(ii) Projectile Motion down the inclined plane

The equation of projectile

$$\vec{a}_x = g \sin \alpha \hat{i} & \vec{a}_y = g \cos \alpha (-\hat{j}); \text{Range down the plane} = \frac{2u^2 \sin \theta \cos(\theta - \alpha)}{g \cos^2 \alpha}$$

Time of flight = $\frac{2u\sin\theta}{g\cos\alpha}$

$$R_{\text{max}}$$
 down the plane = $\frac{u^2(1+\sin\alpha)}{g\cos^2\alpha} = \frac{u^2}{g(1-\sin\alpha)}$

It occurs when direction of projection bisects the angle between the vertical and downward slope of the plane.